Bioengineers and biomedical engineers typically do the following:
Bioengineers and biomedical engineers frequently work in research and development or quality assurance.
The work of bioengineers spans many fields. For example, although their expertise is in engineering and biology, they often design computer software to run complicated instruments, such as three-dimensional x-ray machines. Others use their knowledge of chemistry and biology to develop new drug therapies. Still others draw on math and statistics to understand signals transmitted by the brain or heart. Some are involved in sales.
Biomedical engineers focus on advances in technology and medicine to develop new devices and equipment for improving human health. For example, they might design software to run medical equipment or computer simulations to test new drug therapies. In addition, they design and build artificial body parts, such as hip and knee joints, or develop materials to make replacement parts. They also design rehabilitative exercise equipment.
The following are examples of types of bioengineers and biomedical engineers:
Biochemical engineers focus on cell structures and microscopic systems to create products for bioremediation, biological waste treatment, and other uses.
Bioinstrumentation engineers use electronics, computer science, and measurement principles to develop tools for diagnosing and treating medical problems.
Biomaterials engineers study naturally occurring or laboratory-designed substances for use in medical devices or implants.
Biomechanics engineers study thermodynamics and other systems to solve biological or medical problems.
Clinical engineers apply medical technology to improve healthcare.
Genetic engineers alter the genetic makeup of organism using recombinant deoxyribonucleic acid (rDNA) technology, such as in developing vitamin-fortified food crops to prevent disease in humans.
Rehabilitation engineers develop devices that aid people who are recovering from or adapting to physical or cognitive impairments.
Systems physiologists use engineering tools to understand how biological systems function and respond to changes in their environment.
Other bioengineering occupations are described in separate profiles; see, for example, chemical engineers and agricultural engineers. Some people with training in biomedical engineering become postsecondary teachers.
In high school, students interested in becoming bioengineers or biomedical engineers should take classes in sciences such as chemistry, physics, and biology. They should also study math, including algebra, geometry, trigonometry, and calculus. If available, classes in drafting, mechanical drawing, and computer programming are also useful.
At the bachelor’s degree level, prospective bioengineers should enter bioengineering or traditional engineering programs, such as mechanical and electrical. Students who pursue traditional engineering degrees may benefit from taking biological science courses.
Bachelor’s degree programs in bioengineering and biomedical engineering focus on engineering and biological sciences. These programs typically include laboratory- and classroom-based courses in biological sciences and subjects such as fluid and solid mechanics, circuit design, and biomaterials.
These programs also include substantial training in engineering design. As part of their study, students may have an opportunity to participate in co-ops or internships with hospitals and medical device and pharmaceutical manufacturing companies. Bioengineering and biomedical engineering programs are accredited by ABET.