Materials engineers typically do the following:
Materials engineers create and study materials at the atomic level. They use computers to understand and model the characteristics of materials and their components. They solve problems in several different engineering fields, such as mechanical, chemical, electrical, civil, nuclear, and aerospace.
Materials engineers may specialize in understanding specific types of materials. The following are examples of types of materials engineers:
Ceramic engineers develop ceramic materials and the processes for making them into useful products, from high-temperature rocket nozzles to glass for LCD flat-panel displays.
Composites engineers develop materials with special, engineered properties for applications in aircraft, automobiles, and related products.
Metallurgical engineers specialize in metals, such as steel and aluminum, usually in alloyed form with additions of other elements to provide specific properties.
Plastics engineers develop and test new plastics, known as polymers, for new applications.
Semiconductor processing engineers apply materials science and engineering principles to develop new microelectronic materials for computing, sensing, and related applications.
Students interested in studying materials engineering should take high school courses in math, such as algebra, trigonometry, and calculus; in science, such as biology, chemistry, and physics; and in computer programming.
Entry-level jobs as a materials engineer require a bachelor’s degree. Bachelor’s degree programs include classroom and laboratory work focusing on engineering principles.
Some colleges and universities offer a 5-year program leading to both a bachelor’s and master’s degree. A graduate degree allows an engineer to work as a postsecondary teacher or to do research and development.
Many colleges and universities offer internships and cooperative programs in partnership with industry. In these programs, students gain practical experience while completing their education.
Many engineering programs are accredited by ABET. Some employers prefer to hire candidates who have graduated from an accredited program. A degree from an ABET-accredited program is usually necessary to become a licensed professional engineer.
Licensure for materials engineers is not as common as it is for other engineering occupations, nor it is required for entry-level positions. A Professional Engineering (PE) license, which allows for higher levels of leadership and independence, can be acquired later in one’s career. Licensed engineers are called professional engineers (PEs). A PE can oversee the work of other engineers, sign off on projects, and provide services directly to the public. State licensure generally requires
The initial FE exam can be taken after earning a bachelor’s degree. Engineers who pass this exam are commonly called engineers in training (EITs) or engineer interns (EIs). After meeting work experience requirements, EITs and EIs can take the second exam, called the Principles and Practice of Engineering (PE).
Each state issues its own licenses. Most states recognize licensure from other states, as long as the licensing state’s requirements meet or exceed their own licensure requirements. Several states require continuing education for engineers to keep their licenses.
Certification in the field of metallography, the science and art of dealing with the structure of metals and alloys, is available through ASM International and other materials science organizations.
Additional training in fields directly related to metallurgy and materials’ properties, such as corrosion or failure analysis, is available through ASM International.