Biochemists and biophysicists typically do the following:
Biochemists and biophysicists use advanced technologies, such as lasers and fluorescent microscopes, to conduct scientific experiments and analyses. They also use x rays and computer modeling software to determine the three-dimensional structures of proteins and other molecules. Biochemists and biophysicists involved in biotechnology research use chemical enzymes to synthesize recombinant DNA.
Biochemists and biophysicists work in basic and applied research. Basic research is conducted without any immediately known application; the goal is to expand human knowledge. Applied research is directed toward solving a particular problem.
Biochemists, sometimes called molecular biologists or cellular biologists, may study the molecular mechanisms by which cells feed, divide, and grow. Others study the evolution of plants and animals, to understand how genetic traits are carried through successive generations.
Biophysicists may conduct basic research to learn how nerve cells communicate or how proteins work. Biochemists and biophysicists who conduct basic research typically must submit written grant proposals to colleges and universities, private foundations, and the federal government to get the money they need for their research.
Biochemists and biophysicists who conduct applied research attempt to develop products and processes that improve people’s lives. For example, in medicine, biochemists and biophysicists develop tests used to detect infections, genetic disorders, and other diseases. They also develop new drugs and medications, such as those used to treat cancer or Alzheimer’s disease.
Applied research in biochemistry and biophysics has many uses outside of medicine. In agriculture, biochemists and biophysicists research ways to genetically engineer crops so that they will be resistant to drought, disease, insects, and other afflictions. Biochemists and biophysicists also investigate alternative fuels, such as biofuels—renewable energy sources from plants. In addition, they develop ways to protect the environment and clean up pollution.
Many people with a biochemistry background become professors and teachers. For more information, see the profile on postsecondary teachers.
Most Ph.D. holders in biochemistry and biophysics have bachelor’s degrees in biochemistry or a related field, such as biology, chemistry, physics, or engineering. High school students can prepare for college by taking classes related to the natural and physical sciences, as well as math and computer science.
Students in bachelor’s degree programs in biochemistry or a related field typically take courses in math, physics, and computer science in addition to courses in the biological and chemical sciences. Courses in math and computer science are important for biochemists and biophysicists, who must be able to do complex data analysis. Most bachelor’s degree programs include required laboratory coursework. Additional laboratory coursework is excellent preparation for graduate school or for getting an entry-level position in industry. Students can gain valuable laboratory experience by working for a university’s laboratories. Occasionally, they can also gain such experience through internships with prospective employers, such as pharmaceutical and medicine manufacturers.
Ph.D. programs typically include advanced coursework in topics such as toxicology, genetics, and proteomics (the study of proteins). Several graduate programs include courses in bioinformatics, which involves using computers to study and analyze large amounts of biological data. Graduate students also spend a lot of time conducting laboratory research. Study at the master’s level is generally considered good preparation for those interested in doing hands-on laboratory work. Ph.D.-level studies provide additional training in the planning and execution of research projects.