Agricultural and food scientists typically do the following:
Agricultural and food scientists play an important role in maintaining and expanding the nation’s food supply. Many work in basic or applied research and development. Basic research seeks to understand the biological and chemical processes by which crops and livestock grow. Applied research seeks to discover ways to improve the quality, quantity, and safety of agricultural products.
Many agricultural and food scientists work with little supervision, forming their own hypotheses and developing their research methods. In addition, they often lead teams of technicians or students who help in their research. Agricultural and food scientists who are employed in private industry may need to travel between different worksites.
The following are types of agricultural and food scientists:
Animal scientists typically conduct research on domestic farm animals. With a focus on food production, they explore animal genetics, nutrition, reproduction, diseases, growth, and development. They work to develop efficient ways to produce and process meat, poultry, eggs, and milk. Animal scientists may crossbreed animals to make them more productive or improve other characteristics. They advise farmers on how to upgrade housing for animals, lower animal death rates, increase growth rates, or otherwise increase the quality and efficiency of livestock.
Food scientists and technologists use chemistry, biology, and other sciences to study the basic elements of food. They analyze the nutritional content of food, discover new food sources, and research ways to make processed foods safe and healthy. Food technologists generally work in product development, applying findings from food science research to develop new or better ways of selecting, preserving, processing, packaging, and distributing food. Some food scientists use problem-solving techniques from nanotechnology—the science of manipulating matter on an atomic scale—to develop sensors that can detect contaminants in food. Other food scientists enforce government regulations, inspecting food-processing areas to ensure that they are sanitary and meet waste management standards.
Plant scientists work to improve crop yields and advise food and crop developers about techniques that could enhance production. They may develop ways to control pests and weeds.
Soil scientists examine the composition of soil, how it affects plant or crop growth, and how alternative soil treatments affect crop productivity. They develop methods of conserving and managing soil that farmers and forestry companies can use. Because soil science is closely related to environmental science, people trained in soil science also work to ensure environmental quality and effective land use.
Agricultural and food scientists in private industry commonly work for food production companies, farms, and processing plants. They may improve inspection standards or overall food quality. They spend their time in a laboratory, where they do tests and experiments, or in the field, where they take samples or assess overall conditions. Other agricultural and food scientists work for pharmaceutical companies, where they use biotechnology processes to develop drugs or other medical products. Some look for ways to process agricultural products into fuels, such as ethanol produced from corn.
At universities, agricultural and food scientists do research and investigate new methods of improving animal or soil health, nutrition, and other facets of food quality. They also write grants to organizations, such as the United States Department of Agriculture (USDA) or the National Institutes of Health (NIH), to get funding for their research. For more information on professors who teach agricultural and food science at universities, see the profile on postsecondary teachers.
In the federal government, agricultural and food scientists conduct research on animal safety and on methods of improving food and crop production. They spend most of their time conducting clinical trials or developing experiments on animal and plant subjects.
Agricultural and food scientists may eventually present their findings in peer-reviewed journals or other publications.
Every state has at least one land-grant college that offers agricultural science degrees. Many other colleges and universities also offer agricultural science degrees or related courses. Degrees in related sciences, such as biology, chemistry, and physics, or in a related engineering specialty also may qualify people for many agricultural science jobs.
Undergraduate coursework for food scientists and technologists and for soil and plant scientists typically includes biology, chemistry, botany, and plant conservation. Students preparing to be food scientists take courses such as food chemistry, food analysis, food microbiology, food engineering, and food-processing operations. Students preparing to be soil and plant scientists take courses in plant pathology, soil chemistry, entomology (the study of insects), plant physiology, and biochemistry.
Undergraduate students in agricultural and food sciences typically gain a strong foundation in their specialty, with an emphasis on teamwork through internships and research opportunities. Students also are encouraged to take humanities courses, which can help them develop good communication skills, and computer courses, which can familiarize them with common programs and databases.
Many people with bachelor’s degrees in agricultural sciences find work in related jobs rather than becoming an agricultural or food scientist. For example, a bachelor’s degree in agricultural science is a useful background for farming, ranching, agricultural inspection, farm credit institutions, or companies that make or sell feed, fertilizer, seed, or farm equipment. Combined with coursework in business, agricultural and food science could be a good background for managerial jobs in farm-related or ranch-related businesses. For more information, see the profile on farmers, ranchers, and other agricultural managers.
Many students with bachelors’ degrees in application-focused food sciences or agricultural sciences earn advanced degrees in applied topics such as toxicology or dietetics. Students who major in a more basic field, such as biology or chemistry, may be better suited for getting their Ph.D. and doing research within the agricultural and food sciences. During graduate school, there is additional emphasis on lab work and original research, in which prospective animal scientists have the opportunity to do experiments and sometimes supervise undergraduates.
Advanced research topics include genetics, animal reproduction, agronomy, and biotechnology, among others. Advanced coursework also emphasizes statistical analysis and experiment design, which are important as Ph.D. candidates begin their research.
Some agricultural and food scientists receive a doctor of veterinary medicine (DVM). Like Ph.D. candidates in animal science, a prospective veterinarian must first have a bachelor’s degree before getting into veterinary school.
Some states require soil scientists to be licensed to practice. Licensing requirements vary by state, but generally include holding a bachelor’s degree with a certain number of credit hours in soil science, working under a licensed scientist for a certain number of years, and passing an exam.
Otherwise, certifications are generally not required for agriculture and food scientists, but they can be useful in advancing one’s career. Agricultural and food scientists can get certifications from organizations such as the American Society of Agronomy, the American Registry of Professional Animal Scientists (ARPAS), the Institute of Food Technologists (IFT), or the Soil Science Society of America (SSSA), and others. These certifications recognize expertise in agricultural and food science, and enhance the status of those who are certified.
Qualification for certification is generally based on education, previous professional experience, and passing a comprehensive exam. Scientists may need to take continuing education courses to keep their certification, and they must follow the organization’s code of ethics.